

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International A Level in Statistics 1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2015 Publications Code IA042720 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2015 WST01 STATISTICS 1 Mark Scheme

Question	Scheme			
1. (a)	F(4) = 1			
	$4^2 k = 1 \Longrightarrow k = \frac{1}{16}$	A1		
		(2)		
(b)	e.g. $P(X = 2) = F(2) - F(1) = \frac{4}{16} - \frac{1}{16} = \frac{3}{16}$			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	$\begin{bmatrix} P(X = x) \end{bmatrix} = \frac{16}{16} = \frac{16}{16} = \frac{16}{16} = \frac{16}{16}$			
	(0.0625) (0.1875) (0.3125) (0.4375)	A1		
		(2)		
	Notos	Total 4		
(a)	$\frac{1}{1}$ M1 for writing or using F(4)=1			
	At for $\frac{1}{1}$ or 0.0625 (Answer only scores 2 out of 2)			
	AT for $\frac{1}{16}$ of 0.0625 (Answer only scores 2 out of 2)			
(b)	M1 for correct use of $F(x)$ to find $P(X = 2, 3, or 4)$ (can follow through their <i>k</i> , 3 <i>k</i> , 5 <i>k</i> , 7 <i>k</i>). May be implied by at least two correct probabilities or correct follow through.			
	A1 for a fully correct probability distribution. Allow exact decimals. Ignore incorrect or missing labels if table is all correct.			

Question	Scheme		Marks
2. (a)	$S_{xy} = 1474.1 - \frac{441.5 \times 59.8}{20} = 154.015$	awrt <u>154</u>	M1A1
	$S_{xx} = 11261.25 - \frac{441.5^2}{20} = 1515.1375$	awrt <u>1520</u>	A1
			(3)
(b)	$b = \left[\frac{S_{xy}}{S_{xx}}\right] = \frac{"154.015"}{"1515.1375"} = \left[0.10165084\right]$		M1
	$[a = \overline{y} - b\overline{x} \rightarrow] a = \frac{59.8}{20} - b' \times \frac{441.5}{20} = [0.7460577]$		M1
	y = 0.746 + 0.102x		A1
			(3)
(C)	$\frac{v}{100000} = 0.746' + 0.102' \left(\frac{s-50}{10}\right)$		M1
	v = 23780.34997 + 1016.508403s		
		$c = awrt \ \underline{23600-23800}$ $d = awrt \ \underline{1020}^{**}$	A1 A1
(d)	v = 23780.34997 + 1016.508403 × 130 = 155926.44236	awrt <u>156000</u>	(3) M1A1 (2)
(e)	For each (additional) 1 m^2 in floor size, the value of the <u>`£1020'</u>	house increases by	B1
(f)	$[31d=] \pm 31511.76$	awrt (£) <u>32000</u>	$\begin{bmatrix} (1) \\ B1 \\ (1) \end{bmatrix}$
			Total 13
	Notes		
(a)	M1 for one correct expression for S_{xy} or S_{xx}		
	1 st A1 for either S_{xy} = awrt 154 or S_{xx} = awrt 1520		
	2 nd A1 for both		
(b)	1 st M1 for a correct expression for <i>b</i> (ft their $S_{xy} \neq 1474.1$)		
	2^{nd} M1 for a correct expression for <i>a</i> (allow use of the letter <i>b</i>) A1 for $y = 0.746 \pm 0.102 \text{ m}$ (<i>a</i> = swrt 0.746 and <i>b</i> = swrt 0.102) Must be in y		
	AT for $y = 0.746 \pm 0.102x$ (<i>a</i> – awit 0.746 and <i>b</i> – awit and <i>x</i> and no fractions	t 0.102) Must be my	
(c)	M1 for substituting $y = \frac{v}{100000}$ and $x = \left(\frac{s-50}{10}\right)$ into their eq	juation in (b)	
	$1^{\text{st}} \text{A1} \ c = \text{awrt} \ 23600-23800$		
	$2^{nd} A1 d = 1020^{**}$ answer given so must come from co	orrect working	
Alt	Using $S_{sv} = 1000000S_{xy}$ and $S_{ss} = 100S_{xx}$ to find d and u	using $\overline{v} = 100000\overline{y}$ and	
	s = 10x + 50 to find c can score M1 provided fully corr	ect.	
(d)	M1 for substituting $s = 130$ into their (c) or substituting $x = 8$ into their (b)		
(e)	B1 A correct contextualised interpretation of the numer	rical value of the	
	gradient which must mention m^2 or floor size and \pounds or	value. Allow follow	
(F)	through from their regression equation in (c)		
(1)	DI awit (2)32 000		

Question	Scheme	Marks	
3(a)	$[P(\text{Female}) =]\frac{30}{90} \text{ oe}$	B1	
		(1)	
(b)	$[P(Male < 4 years) =] \frac{P(Male \cap < 4 years)}{P(<4 years)} = \frac{\frac{16}{(90)}}{\frac{16+9}{(90)}} = \frac{16}{25} oe$	M1A1	
		(2)	
(c)	$[P(Male \mid < 10 \text{ years}) =] \frac{P(Male \cap < 10 \text{ years})}{P(<10 \text{ years})} = \frac{\frac{20+16}{(90)}}{\frac{9+16+14+20}{(90)}} = \frac{36}{59}$	M1A1	
		(2)	
(d)	$P(Male < 4 years) = '\frac{16}{25}', P(Male) = \frac{60}{90}$ or		
	$P(\langle 4 \text{ years} \text{Male}) = \frac{16}{60}, P(\langle 4 \text{ years}) = \frac{25}{90} \qquad \underline{\text{or}}$	M1	
	$P(Male \cap < 4 \text{ years}) = \frac{16}{90}$, $P(Male) = \frac{60}{90}$, $P(< 4 \text{ years}) = \frac{25}{90}$		
	$P(M < 4) \neq P(M) \text{ or } P(< 4 M) \neq P(<4) \text{ or}$ $P(Male \cap < 4 \text{ years}) \neq P(M) \times P(<4)$	M1	
	so not independent.	A1	
		(3) Total 8	
	Notes		
(a)	B1 for $\frac{30}{90}$ or exact equivalent		
(b)	M1 for a correct ratio expression with at least one correct probability substituted or for a correct ratio of probabilities, num>denom is M0		
	A1 $\frac{16}{25}$ or 0.64 (Correct answer scores 2 out of 2).		
(c)	M1 for a correct ratio expression with at least one correct probability substituted <u>or</u> for a correct ratio of probabilities. num>denom is M0.		
	A1 $\frac{36}{59}$ or condone awrt 0.610 (must be 3sf) (Correct answer gets 2 out of 2).		
(d)	1 st M1 for stating all of the required numerical probabilities for a correct test which must be labelled. The probabilities must be correct or correct ft from (b)		
	(If attempting the first test, P(Male < 4 years) = $\frac{16}{25}$ was found in part(b) and		
	need not be fully restated here). 2 nd M1 for <u>use</u> of a correct test. Must see the product if attempting the 3 rd test. A1 for correct test with all probabilities correct <u>and</u> a correct conclusion.		
	NB Use of A and B throughout scores M0M0A0 unless A and B are explicitly defined.		

Question	Scheme	Marks
4. (a)	$[P(\text{both blue}) = \frac{1}{20} \times \frac{1}{20} =]\frac{1}{400} \text{ oe}$	B1
		(1)
(b)	P(exactly 1 red) = $2 \times \frac{1}{20} \times \frac{19}{20}$, = $\frac{19}{200}$ oe	M1, A1
		(2)
(c)	P(2 yellow and 1 green)= $3 \times \frac{4}{9} \times \frac{5}{8} \times \frac{4}{7} = \frac{10}{21}$ oe	B1 M1 A1
		(3)
(d)	P(All beads are yellow) = $\frac{5}{4} \times \frac{4}{3} \times \frac{3}{2}$	M1
	9 8 7 6 $P(A t least 1 head is green) = 1 P(A ll heads are vallew)$	
	P(At least 1 bead 1s green) = 1 - P(All beads are yellow) 5 4 3 2 121	
	$1 - \frac{3}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6} = \frac{121}{126}$	M1A1
		(3)
		Total 9
	Notes	
(a)	B1 $\frac{1}{400}$ or 0.0025	
(b)	400	
(~)	M1 for a correct equivalent expression $\frac{1}{20} \times \frac{15}{20} + \frac{15}{20} \times \frac{1}{20}$	
	A1 $\frac{19}{100}$ or 0.095	
	200	
(C)	M1 for any one product correct $M1$ for any one product correct	
	A 1 $\frac{10}{10}$ (allow awrt 0.476 from correct working)	
	21 (anow a write 0.476 from context working)	
(d)	$1^{\text{st}} \text{M1} \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}$	
	2^{nd} M1 Use of $1 - p$ (where p is a product of 4 probabilities)	
	A1 $\frac{121}{126}$ (condone awrt 0.960 must be at least 3sf from correct working)	
	OR	
	1^{st} M1 List all 15 favourable outcomes <u>and</u> at least one correct product	
	$(YYGG)\times4[(YGYG),(YGYY),(GYYG),(GYGY),(GYGY)]$	
	(GGYG)×4 [(GGGY), (YGGG), (GYGG)]	
	(GGGG)	
	2 nd M1 Sum all 15 correct probabilities	
	1^{121} (condone awrt 0.960 must be at least 3sf from correct working)	
	$\frac{126}{126}$ (condone awre 0.200 must be at least 351 from correct working)	

Question	Scheme	Marks	
5. (a)			
	X	B1 dB1	
	55	(2)	
(b)	$P(X > 70) = P\left(Z > \frac{70 - 55}{20}\right)$ = P(Z > 0.75)	(2) M1	
	=1-0.7734=0.2266 awrt <u>0.227/22.7%</u>	M1A1	
(c)	P(X > b) = 0.01	(3)	
	$\frac{b-55}{2} = 2.3263$	M1B1	
	20 h = 101 526 ** Given answer 102**	A 1	
	<i>b</i> = 101.520 Orven answer 102	(3)	
(d)	P(70 < X < m) = 0.1315 P(X < m) - P(X < 70) = 0.1315	M1	
	(m-55)	1411	
	$P\left(Z < \frac{m^2 55}{20}\right) = 0.9049$		
	$\frac{m-55}{2} = 1.31$	M1B1	
	20 m = 81.2	A1	
		(4)	
	Notos	Total 12	
(a)	1 st B1 for a reasonable sketch of a symmetric, bell shaped curve which does		
	not cross the <i>x</i> -axis (ignore any vertical axis drawn)		
	2^{nd} B1 dependent on previous B1 for 55 labelled at the centre of the <i>x</i> -axis		
(b)	1^{st} M1 for standardising with 70, 55, 20 (allow +/-) 2^{nd} M1 Use of $1 - p$ (must be a probability so $1 - 0.67$ is M0)		
	A1 awrt 0.227 or 22.7%		
(C)	M1 for standardising with 55, 20 and equating to <i>z</i> -value $ z >2$ B1 for 2.3263 (or better) used and compatible sign with their standardisation. A1 for awrt 102 which must come from a <i>z</i> -value in the range $2.32 \le z \le 2.34$		
(d)	1 st M1 for a correct expression for $P(X < m)$ (e.g. 0.1315 + '0.7734') <u>or</u> $P(X > m) = 0.0951$ <u>or</u> sight of 0.9049 (may be implied by sight of 1.31) 2 nd M1 for standardising with 55, 20 and equating to a <i>z</i> -value $ z >1$ B1 1.31 (1.31018from calc) used and compatible sign with their standardisation A1 awrt 81.2	on.	

Question	Scheme	Mark	KS
6(a)	$F(3) = \frac{3}{2}$	B1	
	4		(1)
(b)	E(X) = 2.5	B1	(1)
			(1)
(c)	$E(X^{2}) = 1^{2} \times \frac{1}{4} + 2^{2} \times \frac{1}{4} + 3^{2} \times \frac{1}{4} + 4^{2} \times \frac{1}{4} = \frac{15}{2}$	M1	
	$\operatorname{Var}(X) = \frac{15}{2} - \left(\frac{5}{2}\right)^2 = \frac{5}{4} * *$	M1A1 cso	(3)
(d)	$P(Y=y) = \frac{1}{4}$	B1	(3)
(e)	$\operatorname{Var}(Y) = \operatorname{Var}(kX + c) =$		(1)
	$k^2 \operatorname{Var}(X)$	M1	
	$=\frac{5}{k^{2}}k^{2}$	A1	
	4		(2)
(f)	c = 3 - k	B1	(-)
		Total	(1) 9
	Notes	100001	-
(a)	$B1 \frac{3}{2}$ oe		
(h)	4 P1 2 5 co		
(b) (c)	1^{st} M1 for correct expression for $E(\mathbf{Y}^2)$ 15 on its even does not imply this mark.		
	1 White contect expression for $E(X)$. $\frac{1}{2}$ on its own does not imply this mark		
	2^{Inv} M1 for correct expression for Var(X) (follow through their E(X ²) and E(X)) 5		
	Al for $\frac{1}{4}$ cso		
Alt (c)	1 st M1 for writing or using Var(X) = $\frac{n^2 - 1}{12}$ (may be implied by 2 nd M1)		
	2^{nd} M1 for $\frac{4^2 - 1}{12}$ or $\frac{(4+1)(4-1)}{12}$ (15/12 on its own does not score this mark)		
	A1 $\frac{5}{4}$ cso (dependent on both M marks and no incorrect working seen)		
(d)	B1 $\frac{1}{4}$ may be in a table, but must be $\frac{1}{4}$ for each probability.		
(e)	M1 for $k^2 Var(X)$		
	A1 oe		
	Note: Var(Y) = $\frac{3^2 + (3+k)^2 + (3+2k)^2 + (3+3k)^2}{4} - \left(\frac{(3+(3+3k))^2}{2}\right)^2$ oe scores	M1A1	(if
	the correct expression is seen, we can isw)		

Question	Scheme		
7.(a)	$P \blacklozenge$		
	$\begin{array}{c} 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 40 \\ 30 \\ 20 \\ 10 \\ 20 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 6 \\ 10 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $	B1B1 (- 1ee)	
		(2)	
(b)	For any sensible comment about H being far away from the other points. e.g. 'H is an outlier/anomaly', 'The blood protein/ $p/70$ for H is much higher than the other patients', 'H does not follow the (linear) pattern', 'Data collected for H may be incorrect', etc.		
		(1)	
(c)	$r = \frac{369}{\sqrt{423\frac{5}{7} \times 490}} = 0.809826106$		
(d)	<i>r</i> would be closer to 0	(2) B1	
		(1)	
	Notes	101110	
(a)	USING OVERLAY B1B1 all 8 points correctly plotted ½ small square tolerance. 7 points correct B1B0		
(b)	Do not allow 'H is not in range' on its own		
(c)	M1 for a correct expression A1 awrt 0.810 (Accept 0.81 if a fully correct expression is seen)		
(d)	B1 allow <i>r</i> would be smaller/weaker correlation		

Question	Scheme		Marks
8. (a)	(Time is) <u>continuous</u>		B1
			(1)
(b)	40 people = 8 large squares/200 small so	quares	
	200 people = 40 large squares/1000 sma	Ill squares	B1
	40/(21-11) or correct scale on f.d. axis		
	$\frac{x}{x} = \frac{180}{100}$ or $\frac{x}{x} = \frac{7.2}{100}$ or $(21 - 18)$	$(3) \times 4 + (25 - 21) \times 6$	M1
	40 200 40 8		
	36 people (spent between 18 and 25 mir	nutes shopping in the supermarket)	Al
	[20]		(3)
(C)	Median = $26 + \frac{[30]}{2} \times 5 = awrt 30.2$		M1A1
	36		
(1)			(2)
(a)	$\sum fx = 16 \times 40 + 23.5 \times 30 + 28.5 \times 36 \times 36 + 28.5 \times$	$+33.5 \times 40 + 38.5 \times 14 + 46 \times 20 + 61 \times 20$	M1
	= 6390 **		Alcso
			(2)
(e)	$i \overline{x} = \frac{6390}{100} = 31.95$		B1
	200		DI
	$\frac{1238430}{2105^2}$ $\sqrt{1712475}$	12.00(ar = 12.122) arout 12.1	M 1 A 1
	$110 = \sqrt{\frac{200}{200}} - 31.93 = \sqrt{1/1.34/3} = \sqrt{1}$	=13.09(013=13.122) awit <u>13.1</u>	MIAI
			(3)
(f)	0.409	awrt <u>0.4</u>	B1
			(1)
(g)	Method 1	Method 2 (see note)	DI
	(positive) skew or median \neq mean oe	(almost) symmetric oe	BI JD1
	not a good decision	a good decision	dB1
			(2)
	NT.	4	Total 14
(a)	NO Allow not digerate. Condens miggaellin	tes	
(a) (b)	B1 for establishing a ratio (usually 5 or	gs if intention of continuous is clear.	
(0)	calculating f d $(may be implied by M1)$)	
	M1 for a correct ratio or expression usir	ng areas for the people from 18 to 25	
	A1 36 cao (Answer of 36 scores 3 out o	f 3).	
(c)	M1 for an attempt at the medians (shoul	d have 26, 36 and 5). If working down 3	$31 - \frac{[6]}{36} \times 5$
	A1 awrt 30 2 (can come from using $(n+$	1))	50
(d)	M1 for a correct expression for $\sum fx$ con-	done one incorrect product	
	A1cso for 6390 and all correct	1	
(e)(i)	B1 31.95 or equivalent fraction		
(ii)	M1 for correct expression for standard deviation including root		
	A1 awrt 13.1 (answer of awrt 13.1 scores 2 out of 2) $[NB (s = 13.122)]$		
(g)	1 st B1 for comment on skew (may be seen in part (f)). Method 1: skew or median 7		
	Only allow method 2 if $ \text{their}(f) < 0.45$.	Method 2: ~symmetric	
	(any mention of correlation is B0)		
	2 ubi ioi a correct compatible comme	about the manager's decision	
			1

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom